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1. Introduction
• Generalized Labeled Multi-Bernoulli (GLMB) densities arise in a 

host of multi-object system applications, but computing the GLMB 
filtering density requires solving NP-hard problems [1].

 

• This work [2] develops a linear complexity Gibbs sampling (GS) 
framework for GLMB density computation.

• Specifically, we propose a tempered Gibbs sampler that exploits 
the structure of the GLMB filtering density to achieve the first 
𝑶𝑶(𝑻𝑻(𝑷𝑷 + 𝑴𝑴)) complexity.
- 𝑇𝑇: the number of sampling iterations
- 𝑃𝑃: the number of hypothesized objects
- 𝑀𝑀: the number of measurements

3. Methodology
• Tempered GS (TGS) generates the next iterate 𝛾𝛾+′  by randomly 

selecting a coordinate to update with an additional mechanism to 
improve mixing and sample diversity [4].

• A coordinate 𝑖𝑖 ∈ 1:𝑃𝑃  is chosen according to the distribution

𝜌𝜌 𝑖𝑖|𝛾𝛾+ = 𝜙𝜙𝑖𝑖 𝛾𝛾+ ℓ𝑖𝑖 |𝛾𝛾+ ℓ�̅�𝚤
𝜋𝜋𝑖𝑖 𝛾𝛾+ ℓ𝑖𝑖 |𝛾𝛾+ ℓ�̅�𝚤

.

- 𝜙𝜙𝑖𝑖 � |𝛾𝛾+ ℓ ̅𝚤𝚤 : the bounded proposal distribution on 𝑖𝑖 ∈ −1:𝑀𝑀 , 
e.g., for 𝛼𝛼,𝛽𝛽 ∈ (0,1] and for any function 𝑓𝑓,𝑓𝑓𝛽𝛽 � = 𝑓𝑓 � 𝛽𝛽

𝜙𝜙𝑖𝑖 𝑗𝑗|𝛾𝛾+ ℓ ̅𝚤𝚤 = 𝛼𝛼𝜋𝜋𝑖𝑖 𝑗𝑗|𝛾𝛾+ ℓ ̅𝚤𝚤 + 1−𝛼𝛼 𝜋𝜋𝑖𝑖
𝛽𝛽 𝑗𝑗|𝛾𝛾+ ℓ�̅�𝚤

𝜋𝜋𝑖𝑖
𝛽𝛽 �|𝛾𝛾+ ℓ�̅�𝚤 ,1

 

• Given the selection of the 𝑖𝑖-th coordinate, its state is updated by 
sampling from the proposal, i.e.,

𝛾𝛾+′ ℓ𝑖𝑖  ~ 𝜙𝜙𝑖𝑖 � |𝛾𝛾+ ℓ ̅𝚤𝚤 .

• The structure of the problem allows TGS to be implemented with an 
𝑶𝑶(𝑻𝑻(𝑷𝑷 + 𝑴𝑴)) complexity via the positive 1-1 constraint.
- e.g., 

4. Experiments
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5. Conclusion
• This innovation enables the GLMB filter implementation to be 

reduced to an 𝑶𝑶 𝑻𝑻 𝑷𝑷 + 𝑴𝑴 + 𝐥𝐥𝐥𝐥𝐥𝐥𝑻𝑻 + 𝑷𝑷𝑴𝑴  complexity from 𝑂𝑂(𝑇𝑇𝑃𝑃2𝑀𝑀).

• The proposed framework provides the flexibility for trade-offs 
between tracking performance and computational load.

LINEAR COMPLEXITY GIBBS SAMPLING FOR
GENERALIZED LABELED MULTI-BERNOULLI FILTERING

2. Problem Statement
• GLMB truncation amounts to selecting significant 𝜸𝜸+ [3].

- 𝛾𝛾+: the positive 1-1 mapping for the association between
        objects ℓ ∈ 𝕃𝕃 and measurements 𝑧𝑧 ∈ 𝑍𝑍 with 𝛾𝛾+ ℓ = −1 
        (not exist) or 0 (undetected), i.e., 𝛾𝛾+:𝕃𝕃 → {−1:𝑍𝑍}

 

• A (discrete) probability distribution 𝜋𝜋 on {−1:𝑀𝑀}𝑃𝑃 is defined by
𝜋𝜋 𝛾𝛾+ ∝ 1Γ+ 𝛾𝛾+ ∏𝑖𝑖=1

𝑃𝑃 𝜂𝜂𝑖𝑖 𝛾𝛾+ ℓ𝑖𝑖 .
- 1𝑌𝑌 𝑋𝑋 : the set inclusion function

• Systematic-scan GS (SGS) samples from the stationary distribution 𝜋𝜋 
by constructing a Markov chain with transition kernel

𝜋𝜋 𝛾𝛾+′ |𝛾𝛾+ = ∏𝑖𝑖=1
𝑃𝑃 𝜋𝜋𝑖𝑖 𝛾𝛾+′ ℓ𝑖𝑖 |𝛾𝛾+′ ℓ1:𝑖𝑖−1 , 𝛾𝛾+ ℓ𝑖𝑖+1:𝑃𝑃 ,

   where the 𝑖𝑖-th conditional, defined on {−1:𝑀𝑀}𝑃𝑃, is given by

𝜋𝜋𝑖𝑖 � |𝛾𝛾+ ℓ ̅𝚤𝚤 = �𝜋𝜋𝑖𝑖 �|𝛾𝛾+ ℓ�̅�𝚤
�𝜋𝜋𝑖𝑖 �|𝛾𝛾+ ℓ�̅�𝚤 , 1

.
- ̅𝚤𝚤: 1, 2, … , 𝑖𝑖 − 2, 𝑖𝑖 − 1, 𝑖𝑖 + 1, 𝑖𝑖 + 2, … ,𝑃𝑃 − 1,𝑃𝑃

- �𝜋𝜋𝑖𝑖 𝑗𝑗|𝛾𝛾+ ℓ ̅𝚤𝚤 = �
𝜂𝜂𝑖𝑖 𝑗𝑗 ,  𝑗𝑗 < 1

𝜂𝜂𝑖𝑖 𝑗𝑗 1 − 1 𝛾𝛾+ ℓ�̅�𝚤 𝑗𝑗 ,  𝑗𝑗 ∈ 1:𝑀𝑀

• The conditionals are characterized by the 𝑃𝑃 × (𝑀𝑀 + 2) matrix, so the 
time complexity of its computation is 𝑶𝑶(𝑻𝑻𝑷𝑷𝟐𝟐𝑴𝑴).
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