## LINEAR COMPLEXITY GIBBS SAMPLING FOR **GENERALIZED LABELED MULTI-BERNOULLI FILTERING**



Changbeom Shim, Ba-Tuong Vo, Ba-Ngu Vo, Jonah Ong, and Diluka Moratuwage School of Electrical Engineering, Computing and Mathematical Sciences, Curtin University, Australia

| 1. Introduction                                                                                                                                                                                                            | 3. Methodology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| <ul> <li>Generalized Labeled Multi-Bernoulli (GLMB) densities arise in a<br/>host of multi-object system applications, but computing the GLMB<br/>filtering density requires solving NP-hard problems [1].</li> </ul>      | <ul> <li>Tempered GS (TGS) generates the next iterate γ'<sub>+</sub> by randomly selecting a coordinate to update with an additional mechanism to improve mixing and sample diversity [4].</li> </ul>                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| <ul> <li>This work [2] develops a linear complexity Gibbs sampling (GS)<br/>framework for GLMB density computation.</li> </ul>                                                                                             | • A coordinate $i \in \{1: P\}$ is chosen according to the distribution $o(i \chi_{i}) = \frac{\phi_{i}(\gamma_{i}(\ell_{i}) \gamma_{i}(\ell_{i}))}{\phi_{i}(\gamma_{i}(\ell_{i}) \gamma_{i}(\ell_{i}))}$                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| <ul> <li>Specifically, we propose a tempered Gibbs sampler that exploits the structure of the GLMB filtering density to achieve the first O(T(P + M)) complexity.</li> <li>T: the number of sampling iterations</li> </ul> | $p(\iota \gamma_{+}) = \frac{1}{\pi_{i}(\gamma_{+}(\ell_{\bar{i}}) \gamma_{+}(\ell_{\bar{i}}))}$ $- \phi_{i}(\cdot \gamma_{+}(\ell_{\bar{i}})): \text{ the bounded proposal distribution on } i \in \{-1: M\},$ e.g., for $\alpha, \beta \in (0,1]$ and for any function $f, f^{\beta}(\cdot) = [f(\cdot)]^{\beta}$ $\phi_{i}(i \gamma_{-}(\ell_{\bar{i}})) = \alpha \pi_{i}(i \gamma_{-}(\ell_{\bar{i}})) + \frac{(1-\alpha)\pi_{i}^{\beta}(j \gamma_{+}(\ell_{\bar{i}}))}{(1-\alpha)\pi_{i}^{\beta}(j \gamma_{+}(\ell_{\bar{i}}))}$ |  |  |  |  |

. .

- *P*: the number of *nypothesized objects*
- *M*: the number of *measurements*

## 2. Problem Statement

- GLMB truncation amounts to selecting significant  $\gamma_+$  [3]. -  $\gamma_+$ : the positive 1-1 mapping for the association between objects  $\ell \in \mathbb{L}$  and measurements  $z \in Z$  with  $\gamma_+(\ell) = -1$ (not exist) or 0 (undetected), i.e.,  $\gamma_+: \mathbb{L} \to \{-1: Z\}$
- A (discrete) probability distribution  $\pi$  on  $\{-1: M\}^P$  is defined by  $\pi(\gamma_+) \propto \mathbb{1}_{\Gamma_+}(\gamma_+) \prod_{i=1}^{P} \eta_i (\gamma_+(\ell_i)).$ 
  - $1_Y(X)$ : the set inclusion function
- Systematic-scan GS (SGS) samples from the stationary distribution  $\pi$ by constructing a Markov chain with transition kernel

 $\pi(\gamma'_{+}|\gamma_{+}) = \prod_{i=1}^{P} \pi_{i}(\gamma'_{+}(\ell_{i})|\gamma'_{+}(\ell_{1:i-1}), \gamma_{+}(\ell_{i+1:P})),$ where the *i*-th conditional, defined on  $\{-1: M\}^{P}$ , is given by

$$\pi_{i}\left(\cdot |\gamma_{+}(\ell_{\bar{i}})\right) = \frac{\widetilde{\pi}_{i}\left(\cdot |\gamma_{+}(\ell_{\bar{i}})\right)}{\langle \widetilde{\pi}_{i}\left(\cdot |\gamma_{+}(\ell_{\bar{i}})\right), 1 \rangle}$$

$$- \overline{\iota}: 1, 2, \dots, i - 2, i - 1, i + 1, i + 2, \dots, P - 1, P$$

$$\begin{pmatrix} n_{i}(i) & i < 1 \end{pmatrix}$$

- $\varphi_{i}(J|\gamma_{+}(\ell_{\bar{\iota}})) = \alpha \pi_{i}(J|\gamma_{+}(\ell_{\bar{\iota}})) \overline{\langle \pi_{i}^{\beta}(\cdot|\gamma_{+}(\ell_{\bar{\iota}})), 1 \rangle}$
- Given the selection of the *i*-th coordinate, its state is updated by sampling from the proposal, i.e.,

 $\gamma'_+(\ell_i) \sim \phi_i(\cdot |\gamma_+(\ell_{\overline{\iota}})).$ 

- The structure of the problem allows TGS to be implemented with an O(T(P + M)) complexity via the positive 1-1 constraint.
  - **e.g.**,  $\gamma_{+} = (\gamma_{+}(\ell_{1}), ..., \gamma_{+}(\ell_{n}), ..., \gamma_{+}(\ell_{P}))$   $\gamma_{+}(\ell_{n}) = z_{j}$

| not exist        | missed          | $z_1$           | ••• | $z_j$       | ••• | $z_{j'}$         | ••• | $z_M$           |
|------------------|-----------------|-----------------|-----|-------------|-----|------------------|-----|-----------------|
| $\eta_1(-1)$     | $\eta_1(0)$     | $\eta_1(1)$     | ••• | 0           |     | $\eta_1(j')$     | ••• | $\eta_1(M)$     |
| •<br>•           |                 |                 | ·.  |             | ·   | •<br>•<br>•      | ·.  | :               |
| $\eta_{n-1}(-1)$ | $\eta_{n-1}(0)$ | $\eta_{n-1}(1)$ | ••• | 0           |     | $\eta_{n-1}(j')$ | ••• | $\eta_{n-1}(M)$ |
| $\eta_n(-1)$     | $\eta_n(0)$     | $\eta_n(1)$     | ••• | $\eta_n(j)$ |     | $\eta_n(j')$     | ••• | $\eta_n(M)$     |
| $\eta_{n+1}(-1)$ | $\eta_{n+1}(0)$ | $\eta_{n+1}(1)$ | ••• | 0           |     | $\eta_{n+1}(j')$ | ••• | $\eta_{n+1}(M)$ |
| •                | •<br>•<br>•     | •<br>•<br>•     | ·.  | :           | ·   | •                | ·.  | ÷               |
| $\eta_P(-1)$     | $\eta_P(0)$     | $\eta_P(1)$     | ••• | 0           | ••• | $\eta_P(j')$     | ••• | $\eta_P(M)$     |

•  $\gamma'_{+} = (\gamma_{+}(\ell_{1}), ..., \gamma'_{+}(\ell_{n}), ..., \gamma_{+}(\ell_{P}))$ 

╗╴

| not exist        | missed                                    | $z_1$           | ••• | $z_j$           | ••• | $z_{j'}$     | •••   | $z_M$                                                              |
|------------------|-------------------------------------------|-----------------|-----|-----------------|-----|--------------|-------|--------------------------------------------------------------------|
| $\eta_1(-1)$     | $\eta_1(0)$                               | $\eta_1(1)$     | ••• | $\eta_1(j)$     | ••• | 0            | • • • | $\eta_1(M)$                                                        |
| :                |                                           | •<br>•<br>•     | ·.  | :               | ·.  | ÷            | ·.    | ÷                                                                  |
| $\eta_{n-1}(-1)$ | $\eta_{n-1}(0)$                           | $\eta_{n-1}(1)$ |     | $\eta_{n-1}(j)$ |     | 0            |       | $\eta_{n-1}(M)$                                                    |
| $\eta_n(-1)$     | $\begin{bmatrix} \eta_n(0) \end{bmatrix}$ | $\eta_n(1)$     |     | $\eta_n(j)$     |     | $\eta_n(j')$ |       | $\left[ \begin{array}{c} \overline{\eta_n(M)} \end{array} \right]$ |
| $\eta_{n+1}(-1)$ | $\eta_{n+1}(0)$                           | $\eta_{n+1}(1)$ | ••• | $\eta_{n+1}(j)$ | ••• | 0            |       | $\eta_{n+1}(M)$                                                    |
| :                | •<br>•<br>•                               | • • •           | ·.  | :               | ·.  | :            | ·.    | :                                                                  |
| $\eta_P(-1)$     | $\eta_P(0)$                               | $\eta_P(1)$     |     | $\eta_P(j)$     |     | 0            |       | $\eta_P(M)$                                                        |

ヨロリ  $- \tilde{\pi}_{i}(j|\gamma_{+}(\ell_{\bar{\iota}})) = \begin{cases} \eta_{i}(j) \left(1 - 1_{\{\gamma_{+}(\ell_{\bar{\iota}})\}}(j)\right), & j \in \{1:M\} \end{cases}$ 

• The conditionals are characterized by the  $P \times (M + 2)$  matrix, so **the** time complexity of its computation is  $O(TP^2M)$ .

## 4. Experiments

$$- + TGS^+ - - - RGS^+ - A - \overline{DGS}^+ - - \overline{DGS}^+ - - - SGS^+ - - - RGS - SGS$$



(km)

Parameter settings.



| o<br>o<br>o<br>o<br>o<br>1<br>z<br>3<br>x (km)<br>Random scenario                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $ \begin{array}{c} 60\\ 40\\ 20\\ 0\\ 1\\ 2\\ 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ Total \ trajectories \ (x10) \\ (a) \ Varying \ N_X \end{array} $ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 5. Conclu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ision                                                                                                                                       | References                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| <ul> <li>This innovation enables the GLMB fill reduced to an O(T(P + M + log T) +</li> <li>The proposed framework provides the between tracking performance and composed of the proposed of the performance and composed of th</li></ul> | ter implementation to be<br><b>PM</b> ) complexity from $O(TP^2M)$ .<br>e flexibility for trade-offs<br>omputational load.                  | <ol> <li>BT. Vo &amp; BN. Vo, "Labeled random finite sets and multi-object conjugate priors," IEEE TSP, 2013</li> <li>C. Shim, et al., "Linear complexity Gibbs sampling for generalized labeled multi-Bernoulli filtering," IEEE TSP, 2023</li> <li>BN. Vo, et al., "An efficient implementation of the generalized labeled multi-Bernoulli filter," IEEE TSP, 2017</li> <li>G. Zanella &amp; G. Roberts, "Scalable importance tempering and Bayesian variable selection," J. Roy. Stat. Soc.: Ser. B (Stat. Methodol.), 2019</li> </ol> |  |  |  |  |

Acknowledgement: This work was supported by the Australian Research Council under Linkage Project LP200301507 and Future Fellowship FT210100506.